High-frequency tuning properties of bullfrog lagenar vestibular afferent fibers.
نویسندگان
چکیده
A common property of vertebrate acoustic sensors, including otoconial acoustic sensors in lower vertebrates, is steep slopes on the high- and low-frequency band edges of the amplitude tuning curves. Bullfrog otoconial acoustic fibers are responsive to sound and exquisitely responsive to substrate vibrations in the frequency range from 20 Hz to 300 Hz. The sum of the absolute values of the two band-edge slopes of the amplitude tuning curve of such a fiber typically ranges from 100 dB/decade to 160 dB/decade (sometimes as high as 220 dB/decade), implying typical dynamic order of at least five to eight. We wondered if such steep slopes and the high dynamic order implied by them reflect special adaptations in acoustic sensors or if they are inherent in all lower-vertebrate otoconial sensors excited in this frequency range. To address this question, we examined the amplitude tuning characteristics of afferent nerve fibers from a bullfrog otoconial vestibular sensor in the same frequency range. In this paper, we report observations of tuning for bullfrog lagenar vestibular fibers in the frequency range from 10 Hz to approximately 500 Hz. To make these observations, we stimulated the frog with random dorsoventral motion that exhibited Gaussian amplitude distribution and that was flat in velocity from 10 Hz to 1.0 kHz. For each afferent fiber studied, we used discrete cross-correlation (between stimulus waveform and axon spike train) and discrete Fourier transformation to compute an amplitude tuning curve. In contrast with the amplitude tuning curve. In contrast with the amplitude tuning curves from saccular and lagenar acoustic fibers, those from the lagenar vestibular fibers typically had band-edge slopes whose absolute values summed to approximately 20 dB/decade, implying typical dynamic order of one. We conclude that steep band-edge slopes and high dynamic order are indeed special features of acoustic sensors, not shared by vestibular sensors.
منابع مشابه
A comparison of the linear tuning properties of two classes of axons in the bullfrog lagena.
Various vertebrate inner-ear end organs appear to have switched their sensory function between equilibrium sensing and acoustic sensing over the courses of various lines of evolution. It is possible that all that is required to make this transition is to provide an end organ with access to the appropriate stimulus mode and frequency range. If, as we believe, however, the adaptive advantage of a...
متن کاملAcute seismic sensitivity in the bullfrog ear.
Single axons in the auditory/vestibular nerve of the American bullfrog exhibit by far the most exquisite sensitivity to substrate-borne vibration yet reported for a quadruped vertebrate. Earlier dye-injection studies revealed that these axons, which are relatively insensitive to airborne sound, originate at the saccular and lagenar maculae of the bullfrog inner ear. The more sensitive axons exh...
متن کاملDifferential spatial organization of otolith signals in frog vestibular nuclei.
Activation maps of pre- and postsynaptic field potential components evoked by separate electrical stimulation of utricular, lagenar, and saccular nerve branches in the isolated frog hindbrain were recorded within a stereotactic outline of the vestibular nuclei. Utricular and lagenar nerve-evoked activation maps overlapped strongly in the lateral and descending vestibular nuclei, whereas lagenar...
متن کاملDistributed Neural Information Processing in the Vestibulo-Ocular System
A new distributed neural information-processing model is proposed to explain the response characteristics 457 of the vestibulo-ocular system and to reflect more accurately the latest anatomical and neurophysiological data on the vestibular afferent fibers and vestibular nuclei. In this model, head motion is sensed topographically by hair cells in the semicircular canals. Hair cell signals are t...
متن کاملPostlesional vestibular reorganization improves the gain but impairs the spatial tuning of the maculo-ocular reflex in frogs.
The ramus anterior (RA) of N.VIII was sectioned unilaterally. Two months later we analyzed in vivo responses of the ipsi- and of the contralesional abducens nerve during horizontal and vertical linear acceleration in darkness. The contralesional abducens nerve had become responsive again to linear acceleration either because of a synaptic reorganization in the vestibular nuclei on the operated ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of vestibular research : equilibrium & orientation
دوره 6 2 شماره
صفحات -
تاریخ انتشار 1996